Matlab/Freemat/Octave/Scilab: Solution of Linear Systems of Equations

A linear system ${ }^{1}$ of equations can be written as a matrix-vector equation. Often a linear system of equations has the same number of equations as it has unknowns. In this case the matrix will be square and this is the case that is considered in this document.

A linear system of equations can be written in the matrix-vector form

$$
A \underline{x}=\underline{b},
$$

where A is a square matrix, \underline{b} is a given vector and \underline{x} is the vector of unknowns.
The solution can be obtained by inverting A, and this method will be considered in this document. However, there is also a direct method of division in Matlab/Freemat/Octave/Scilab, which is also more computationally efficient than the former method.

Solution by inverting A

By writing the equation in the form

$$
\underline{x}=A^{-1} \underline{b},
$$

the solution of the linear system of equations can be found by first inverting A and multiplying the result by \underline{b}.

For example the equation

$$
\left(\begin{array}{ll}
2 & 1 \\
3 & 2
\end{array}\right)\binom{x}{y}=\binom{7}{12}
$$

may be solved as follows.

$$
\begin{aligned}
& -->A=[21 ; 32] \\
& A= \\
& 21 \\
& 32 \\
& -->b=[7 ; 12] \\
& b= \\
& 7 \\
& 12 \\
& -->\operatorname{inv}(A) * b \\
& \text { ans }= \\
& 2 \\
& 3
\end{aligned}
$$

[^0]
Solution by division

The recommended method is to use the division operator (() to solve linear systems of equations. For example the system above can be solved as follows.

$$
\begin{aligned}
& -->A=[21 ; 32] \\
& A= \\
& 21 \\
& 32 \\
& -->b=[7 ; 12] \\
& b= \\
& 7 \\
& 12 \\
& -->A \backslash b \\
& \text { ans }= \\
& 2.0000 \\
& 3.0000
\end{aligned}
$$

Given the example of a 3×3 system

$$
\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 2 & 1 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right),
$$

the solution $\left(\begin{array}{c}-1 \\ 0.5 \\ 2\end{array}\right)$ can be found in Matlab/Freemat as follows.

$$
\begin{aligned}
& A= \\
& 101 \\
& 121 \\
& 021 \\
& -->b=[1 ; 2 ; 3] \\
& b= \\
& 1 \\
& 2 \\
& 3 \\
& -->A \backslash b \\
& \text { ans }= \\
& -1.0000 \\
& 0.5000 \\
& 2.0000
\end{aligned}
$$

[^0]: ${ }^{1}$ Linear Systems and 2x2 Matrices

